Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Pediatr Res ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012310

RESUMO

BACKGROUND: Tie2, a functional angiopoietin receptor, is expressed in vascular endothelial cells and plays an important role in angiogenesis and vascular stability. This study aimed to evaluate the effects of an agonistic Tie2 signal on renal interstitial fibrosis (RIF) and elucidate the underlying mechanisms. METHODS: We established an in vivo mouse model of folic acid-induced nephropathy (FAN) and an in vitro model of lipopolysaccharide-stimulated endothelial cell injury, then an agonistic Tie2 monoclonal antibody (Tie2 mAb) was used to intervent these processes. The degree of tubulointerstitial lesions and related molecular mechanisms were determined by histological assessment, immunohistochemistry, western blotting, and qPCR. RESULTS: Tie2 mAb attenuated RIF and reduced the level of fibroblast-specific protein 1 (FSP1). Further, it suppressed vascular cell adhesion molecule-1 (VCAM-1) and increased CD31 density in FAN. In the in vitro model, Tie2 mAb was found to decrease the expression of VCAM-1, Bax, and α-smooth muscle actin (α-SMA). CONCLUSIONS: The present findings indicate that the agonistic Tie2 mAb exerted vascular protective effects and ameliorated RIF via inhibition of vascular inflammation, apoptosis, and fibrosis. Therefore, Tie2 may be a potential target for the treatment of this disease. IMPACT: This is the first report to confirm that an agonistic Tie2 monoclonal antibody can reduce renal interstitial fibrosis in folic acid-induced nephropathy in mice. This mechanism possibly involves vascular protective effects brought about by inhibition of vascular inflammation, apoptosis and fibrosis. Our data show that Tie2 signal may be a novel, endothelium-specific target for the treatment of tubulointerstitial fibrosis.

2.
Front Biosci (Landmark Ed) ; 28(9): 196, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37796681

RESUMO

BACKGROUND: Serine hydroxymethyltransferase (SHMT) is a serine-glycine-one-carbon metabolic enzyme in which SHMT1 and SHMT2 encode the cytoplasmic and mitochondrial isoenzymes, respectively. SHMT1 and SHMT2 are key players in cancer metabolic reprogramming, and thus are attractive targets for cancer therapy. However, the role of SHMT in patients with renal cell carcinoma (RCC) has not been fully elucidated. We aimed to systematically analyze the expression, gene regulatory network, prognostic value, and target prediction of SHMT1 and SHMT2 in patients with kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), and kidney renal papillary cell carcinoma (KIRP); elucidate the association between SHMT expression and RCC; and identify potential new targets for clinical RCC treatment. METHODS: Several online databases were used for the analysis, including cBioPortal, TRRUST, GeneMANIA, GEPIA, Metascape, UALCAN, LinkedOmics, and TIMER. RESULTS: SHMT1 and SHMT2 transcript levels were significantly down- and upregulated, respectively, in patients with KICH, KIRC, and KIRP, based on sample type, individual cancer stage, sex, and patient age. Compared to men, women with KIRC and KIRP showed significantly up- and downregulated SHMT1 transcript levels, respectively. However, SHMT2 transcript levels were significantly upregulated in the patients mentioned above. KIRC and KIRP patients with high SHMT1 expression had longer survival periods than those with low SHMT1 expression. In patients with KIRC, the findings were similar to those mentioned above. However, in KICH patients, the findings were the opposite regarding SHMT2 expression. SHMT1 versus SHMT2 were altered by 9% versus 3% (n = 66 KICH patients), 4% versus 4% (n = 446 KIRC patients), and 6% versus 7% (n = 280 KIRP patients). SHMT1 versus SHMT2 promoter methylation levels were significantly up- and downregulated in patients with KIRP versus KIRC and KIRP, respectively. SHMT1, SHMT2, and their neighboring genes (NG) formed a complex network of interactions. The molecular functions of SHMT1 and its NG in patients with KICH, KIRC, and KIRP, included clathrin adaptor, metalloendopeptidase, and GTPase regulator activities; lipid binding, active transmembrane transporter activity, and lipid transporter activity; and type I interferon receptor binding, integrin binding, and protein heterodimerization, respectively. Their respective Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were involved in lysosome activity, human immunodeficiency virus 1 infection, and endocytosis; coronavirus disease 2019 and neurodegeneration pathways (multiple diseases); and RIG-I-like receptor signaling pathway, cell cycle, and actin cytoskeleton regulation. The molecular functions of SHMT2 and its NG in patients with KICH, KIRC, and KIRP included cell adhesion molecule binding and phospholipid binding; protein domain-specific binding, enzyme inhibitor activity, and endopeptidase activity; and hormone activity, integrin binding, and protein kinase regulator activity, respectively. For patients with KIRC versus KIRP, the KEGG pathways were involved in cAMP and calcium signaling pathways versus microRNAs (MiRNAs) in cancer cells and neuroactive ligand-receptor interactions, respectively. We identified the key transcription factors of SHMT1 and its NG. CONCLUSIONS: SHMT1 and SHMT2 expression levels were different in patients with RCC. SHMT1 and SHMT2 may be potential therapeutic and prognostic biomarkers in these patients. Transcription factor (MYC, STAT1, PPARG, AR, SREBF2, and SP3) and miRNA (miR-17-5P, miR-422, miR-492, miR-137, miR-30A-3P, and miR-493) regulations may be important strategies for RCC treatment.


Assuntos
COVID-19 , Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Masculino , Humanos , Feminino , Carcinoma de Células Renais/genética , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Integrinas , Lipídeos
3.
Orphanet J Rare Dis ; 18(1): 297, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736751

RESUMO

BACKGROUND: Chronic active Epstein-Barr virus infection (CAEBV) and Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH) are rare but life-threatening progressive diseases triggered by EBV infection. Glucocorticoid/immunosuppressants treatment is temporarily effective; however, most patients relapse and/or progress. Hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy; however, there are risks of transplantation-associated complications. Currently there is no standard treatment for CAEBV and EBV-HLH. Programmed death protein 1 (PD-1) inhibitors have achieved a high response in many EBV-related diseases. Sintilimab (a recombinant human IgG4 monoclonal antibody against PD-1) disrupts the interaction between PD-1 and its ligand, leading to T cell reinvigoration. METHODS: A retrospective analysis was performed on three children with CAEBV or EBV-HLH in the Children's Hospital of Soochow University between 12 December 2020 and 28 November 2022. The efficacy of sintilimab was evaluated. RESULTS: Three patients, including two males and one female, were analyzed. Among them, two children were diagnosed with CAEBV with intermittent fever for more than four years, and one child was diagnosed with EBV-HLH. After sintilimab treatment and a mean follow-up of 17.1 months (range 10.0-23.3 months), patients 1 and 3 achieved a complete clinical response and patient 2 achieved a partial clinical response. All three children showed a > 50% decrease in EBV-DNA load in both blood and plasma. EBV-DNA copies in sorted T, B, and NK cells were also markedly decreased after sintilimab treatment. CONCLUSION: Our data supported the efficacy of PD-1 targeted therapy in certain patients with CAEBV and EBV-HLH, and suggested that sintilimab could provide a cure for these diseases, without HSCT. More prospective studies and longer follow-up are needed to confirm these conclusions.


Assuntos
Infecções por Vírus Epstein-Barr , Linfo-Histiocitose Hemofagocítica , Masculino , Criança , Humanos , Feminino , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Herpesvirus Humano 4 , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Receptor de Morte Celular Programada 1 , Estudos Prospectivos , Estudos Retrospectivos
4.
Genome Med ; 15(1): 74, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37723522

RESUMO

BACKGROUND: Many families and individuals do not meet criteria for a known hereditary cancer syndrome but display unusual clusters of cancers. These families may carry pathogenic variants in cancer predisposition genes and be at higher risk for developing cancer. METHODS: This multi-centre prospective study recruited 195 cancer-affected participants suspected to have a hereditary cancer syndrome for whom previous clinical targeted genetic testing was either not informative or not available. To identify pathogenic disease-causing variants explaining participant presentation, germline whole-genome sequencing (WGS) and a comprehensive cancer virtual gene panel analysis were undertaken. RESULTS: Pathogenic variants consistent with the presenting cancer(s) were identified in 5.1% (10/195) of participants and pathogenic variants considered secondary findings with potential risk management implications were identified in another 9.7% (19/195) of participants. Health economic analysis estimated the marginal cost per case with an actionable variant was significantly lower for upfront WGS with virtual panel ($8744AUD) compared to standard testing followed by WGS ($24,894AUD). Financial analysis suggests that national adoption of diagnostic WGS testing would require a ninefold increase in government annual expenditure compared to conventional testing. CONCLUSIONS: These findings make a case for replacing conventional testing with WGS to deliver clinically important benefits for cancer patients and families. The uptake of such an approach will depend on the perspectives of different payers on affordability.


Assuntos
Síndromes Neoplásicas Hereditárias , Humanos , Estudos Prospectivos , Oncogenes , Testes Genéticos , Células Germinativas
5.
Allergy Asthma Clin Immunol ; 19(1): 86, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37742016

RESUMO

BACKGROUND: Activated phosphoinositide3-kinase (PI3K) δ syndrome 1 (APDS1) is a novel inborn errors of immunity (IEIs) caused by heterozygous gain of function mutations in PI3Kδ catalytic p110δ (PIK3CD). APDS1 has a spectrum of clinical manifestations. Recurrent respiratory infections, lymphoproliferation, hepatosplenomegaly, hyper-IgM syndrome and autoimmunity are the common symptoms of this disease. CASE PRESENTATION: Patient 1 presented with recurrent respiratory infections, hepatosplenomegaly and hyper-IgM syndrome. Patient 2 developed early onset systemic lupus erythematosus (SLE)-like disease with resistant thrombocytopenia. c.3061 G > A and c.2314G > A variants in the PIK3CD gene were detected by whole exome sequencing in two patients respectively. c.2314G > A variant in PIK3CD gene of patient 2 is a newly report. After genetic diagnosis, two patients received sirolimus treatment and sirolimus alleviated clinical manifestations, including hepatosplenomegaly in patient 1 and thrombocytopenia in patient 2. CONCLUSION: Genetics diagnosis should be considered in patients with complicated clinical manifestations with no or insufficient response to the conventional therapies. If whole exome sequencing suggests a variant in PIK3CD gene, sirolimus may relieve hepatosplenomegaly and resistant thrombocytopenia. This is the first report of c.2314G > A variant in PIK3CD gene.

6.
Front Immunol ; 14: 1163633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261359

RESUMO

Programmed cell death 1 receptor (PD-1) and its ligands constitute an inhibitory pathway to mediate the mechanism of immune tolerance and provide immune homeostasis. Significantly, the binding partners of PD-1 and its associated ligands are diverse, which facilitates immunosuppression in cooperation with other immune checkpoint proteins. Accumulating evidence has demonstrated the important immunosuppressive role of the PD-1 axis in the tumor microenvironment and in autoimmune diseases. In addition, PD-1 blockades have been approved to treat various cancers, including solid tumors and hematological malignancies. Here, we provide a comprehensive review of the PD-1 pathway, focusing on the structure and expression of PD-1, programmed cell death 1 ligand 1 (PD-L1), and programmed cell death 1 ligand 2 (PD-L2); the diverse biological functions of PD-1 signaling in health and immune-related diseases (including tumor immunity, autoimmunity, infectious immunity, transplantation immunity, allergy and immune privilege); and immune-related adverse events related to PD-1 and PD-L1 inhibitors.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Ligantes , Terapia de Imunossupressão , Transdução de Sinais , Doenças Autoimunes/tratamento farmacológico , Microambiente Tumoral
7.
Nat Commun ; 14(1): 3155, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258531

RESUMO

Oesophageal adenocarcinoma is a poor prognosis cancer and the molecular features underpinning response to treatment remain unclear. We investigate whole genome, transcriptomic and methylation data from 115 oesophageal adenocarcinoma patients mostly from the DOCTOR phase II clinical trial (Australian New Zealand Clinical Trials Registry-ACTRN12609000665235), with exploratory analysis pre-specified in the study protocol of the trial. We report genomic features associated with poorer overall survival, such as the APOBEC mutational and RS3-like rearrangement signatures. We also show that positron emission tomography non-responders have more sub-clonal genomic copy number alterations. Transcriptomic analysis categorises patients into four immune clusters correlated with survival. The immune suppressed cluster is associated with worse survival, enriched with myeloid-derived cells, and an epithelial-mesenchymal transition signature. The immune hot cluster is associated with better survival, enriched with lymphocytes, myeloid-derived cells, and an immune signature including CCL5, CD8A, and NKG7. The immune clusters highlight patients who may respond to immunotherapy and thus may guide future clinical trials.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Terapia Neoadjuvante , Multiômica , Austrália , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética
8.
Front Endocrinol (Lausanne) ; 14: 1089531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793283

RESUMO

Background: Bromodomain and extracellular terminal (BET) family (including BRD2, BRD3, and BRD4) is considered to be a major driver of cancer cell growth and a new target for cancer therapy. Currently, more than 30 targeted inhibitors have shown significant inhibitory effects against various tumors in preclinical and clinical trials. However, the expression levels, gene regulatory networks, prognostic value, and target prediction of BRD2, BRD3, and BRD4 in adrenocortical carcinoma (ACC) have not been fully elucidated. Therefore, this study aimed to systematically analyze the expression, gene regulatory network, prognostic value, and target prediction of BRD2, BRD3, and BRD4 in patients with ACC, and elucidated the association between BET family expression and ACC. We also provided useful information on BRD2, BRD3, and BRD4 and potential new targets for the clinical treatment of ACC. Methods: We systematically analyzed the expression, prognosis, gene regulatory network, and regulatory targets of BRD2, BRD3, and BRD4 in ACC using multiple online databases, including cBioPortal, TRRUST, GeneMANIA, GEPIA, Metascape, UALCAN, LinkedOmics, and TIMER. Results: The expression levels of BRD3 and BRD4 were significantly upregulated in ACC patients at different cancer stages. Moreover, the expression of BRD4 was significantly correlated with the pathological stage of ACC. ACC patients with low BRD2, BRD3, and BRD4 expressions had longer survival than patients with high BRD2, BRD3, and BRD4 expressions. The expression of BRD2, BRD3, and BRD4 was altered by 5%, 5%, and 12% in 75 ACC patients, respectively. The frequency of gene alterations in the 50 most frequently altered BRD2, BRD3, and BRD4 neighboring genes in these ACC patients were ≥25.00%, ≥25.00%, and ≥44.44%, respectively. BRD2, BRD3, and BRD4 and their neighboring genes form a complex network of interactions mainly through co-expression, physical interactions, and shared protein domains. Molecular functions related to BRD2, BRD3, and BRD4 and their neighboring genes mainly include protein-macromolecule adaptor activity, cell adhesion molecule binding, and aromatase activity. Chemokine signaling pathway, thiamine metabolism, and olfactory transduction were found to be enriched as per the KEGG pathway analysis. SP1, NPM1, STAT3, and TP53 are key transcription factors for BRD2, BRD4, and their neighboring genes. MiR-142-3P, miR-484, and miR-519C were the main miRNA targets of BRD2, BRD3, BRD4, and their neighboring genes. We analyzed the mRNA sequencing data from 79 patients with ACC and found that ZSCAN12, DHX16, PRPF4B, EHMT1, CDK5RAP2, POMT1, WIZ, ZNF543, and AKAP8 were the top nine genes whose expression were positively associated with BRD2, BRD3, and BRD4 expression. The expression level of BRD2, BRD3, and BRD4 positively correlated with B cell and dendritic cell infiltration levels. BRD4-targeted drug PFI-1 and (BRD2, BRD3, and BRD4)-targeted drug I-BET-151 may have good inhibitory effects on the SW13 cell line. Conclusions: The findings of this study provide a partial basis for the role of BRD2, BRD3, and BRD4 in the occurrence and development of ACC. In addition, this study also provides new potential therapeutic targets for ACC, which can serve as a reference for future basic and clinical research.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , MicroRNAs , Humanos , Proteínas Nucleares/genética , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Domínios Proteicos , Carcinoma Adrenocortical/genética , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/genética , Prognóstico , Proteínas do Tecido Nervoso/genética , Proteínas de Ciclo Celular/genética , Fatores de Transcrição Kruppel-Like/genética
9.
Biomed Res Int ; 2022: 5137301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246978

RESUMO

Background: Tumor angiogenesis plays a vital role in tumorigenesis, proliferation, and metastasis. Recently, vascular endothelial growth factor A (VEGFA) and CXC chemokines have been shown to play vital roles in angiogenesis. Exploring the expression level, gene regulatory network, prognostic value, and target prediction of the CXC chemokine-VEGFA network in colon adenocarcinoma (COAD) is crucial from the perspective of tumor angiogenesis. Methods: In this study, we analyzed gene expression and regulation, prognostic value, target prediction, and immune infiltrates related to the CXC chemokine-VEGFA network in patients with COAD using multiple databases (cBioPortal, UALCAN, Human Protein Atlas, GeneMANIA, GEPIA, TIMER (version 2.0), TRRUST (version 2), LinkedOmics, and Metascape). Results: Our results showed that CXCL1/2/3/5/6/8/11/16/17 and VEGFA were markedly overexpressed, while CXCL12/13/14 were underexpressed in patients with COAD. Moreover, genetic alterations in the CXC chemokine-VEGFA network found at varying rates in patients with COAD were as follows: CXCL1/2/17 (2.1%), CXCL3/16 (2.6%), CXCL5/14 (2.4%), CXCL6 (3%), CXCL8 (0.8%), CXCL11/13 (1.9%), CXCL12 (0.6%), and VEGFA (1.3%). Promoter methylation of CXCL1/2/3/11/13/17 was considerably lower in patients with COAD, whereas methylation of CXCL5/6/12/14 and VEGFA was considerably higher. Furthermore, CXCL9/10/11 and VEGFA expression was notably correlated with the pathological stages of COAD. In addition, patients with COAD with high CXCL8/11/14 or low VEGFA expression levels survived longer than patients with dissimilar expression levels. CXC chemokines and VEGFA form a complex regulatory network through coexpression, colocalization, and genetic interactions. Moreover, many transcription factor targets of the CXC chemokine-VEGFA network in patients with COAD were identified: RELA, NFKB1, ZFP36, XBP1, HDAC2, SP1, ATF4, EP300, BRCA1, ESR1, HIF1A, EGR1, STAT3, and JUN. We further identified the top three miRNAs involved in regulating each CXC chemokine within the network: miR-518C, miR-369-3P, and miR-448 regulated CXCL1; miR-518C, miR-218, and miR-493 regulated CXCL2; miR-448, miR-369-3P, and miR-221 regulated CXCL3; miR-423 regulated CXCL13; miR-378, miR-381, and miR-210 regulated CXCL14; miR-369-3P, miR-382, and miR-208 regulated CXCL17; miR-486 and miR-199A regulated VEGFA. Furthermore, the CXC chemokine-VEGFA network in patients with COAD was notably associated with immune infiltration. Conclusions: This study revealed that the CXC chemokine-VEGFA network might act as a prognostic biomarker for patients with COAD. Moreover, our study provides new therapeutic targets for COAD, serving as a reference for further research in the future.


Assuntos
Adenocarcinoma , Quimiocinas CXC , Neoplasias do Colo , MicroRNAs , Fator A de Crescimento do Endotélio Vascular , Adenocarcinoma/genética , Adenocarcinoma/patologia , Biomarcadores , Quimiocinas CXC/metabolismo , Neoplasias do Colo/patologia , Humanos , Fatores de Transcrição , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Genome Med ; 14(1): 58, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637530

RESUMO

BACKGROUND: Malignant pleural mesothelioma (MPM) has a poor overall survival with few treatment options. Whole genome sequencing (WGS) combined with the immune features of MPM offers the prospect of identifying changes that could inform future clinical trials. METHODS: We analysed somatic mutations from 229 MPM samples, including previously published data and 58 samples that had undergone WGS within this study. This was combined with RNA-seq analysis to characterize the tumour immune environment. RESULTS: The comprehensive genome analysis identified 12 driver genes, including new candidate genes. Whole genome doubling was a frequent event that correlated with shorter survival. Mutational signature analysis revealed SBS5/40 were dominant in 93% of samples, and defects in homologous recombination repair were infrequent in our cohort. The tumour immune environment contained high M2 macrophage infiltrate linked with MMP2, MMP14, TGFB1 and CCL2 expression, representing an immune suppressive environment. The expression of TGFB1 was associated with overall survival. A small subset of samples (less than 10%) had a higher proportion of CD8 T cells and a high cytolytic score, suggesting a 'hot' immune environment independent of the somatic mutations. CONCLUSIONS: We propose accounting for genomic and immune microenvironment status may influence therapeutic planning in the future.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Genômica , Humanos , Neoplasias Pulmonares/genética , Mesotelioma/genética , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Microambiente Tumoral/genética
11.
Int J Biol Markers ; 37(2): 158-169, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35254116

RESUMO

BACKGROUND: Fragile histidine triad (FHIT) is a strong tumor suppressor gene, and cells deficient in FHIT are prone to acquiring cancer-promoting mutations. Due to its location, deletions within FHIT are common in cancer. Over 50% of cancers show loss of FHIT expression. However, to date, expression levels, gene regulatory networks, prognostic value, and target prediction of FHIT in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) have not been fully reported. Therefore, systematic analysis of FHIT expression, gene regulatory network, prognostic value, and targeted prediction in patients with LUAD and LUSC has important guiding significance, providing new therapeutic targets and strategies for clinical treatment of lung cancer to further improve the therapeutic effect of lung cancer. METHODS: Multiple free online databases were used for the abovementioned analysis in this study, including cBioPortal, TRRUST, Human Protein Atlas, GeneMANIA, GEPIA, Metascape, UALCAN, LinkedOmics, and TIMER. RESULTS: FHIT was upregulated in patients with LUAD, and downregulated in patients with LUSC. Genetic alterations of FHIT were found in patients with LUAD (7%), and LUSC (10%). The promoter methylation of FHIT was lower in patients with LUAD and LUSC. FHIT expression significantly correlated with LUSC pathological stages. Furthermore, patients with LUAD and LUSC having low FHIT expression levels had a longer survival than those having high FHIT expression levels. FHIT and its neighboring genes (the 50 most frequently altered neighboring genes of FHIT) functioned in the regulation of protein kinase and DNA binding in patients with LUAD, as well as cell channels and membrane potential in patients with LUSC. Gene ontology enrichment analysis revealed that the functions of FHIT and its neighboring genes are mainly related to disordered domain-specific binding, protein kinase binding, and ion gated channel activity in patients with LUAD, as well as calcium ion binding and intracellular ligand-gated ion channel activity in patients with LUSC. Transcription factor targets of FHIT and its neighboring genes in patients with lung cancer were found: USF1, SOX6, USF2, SIRT1, VHL, LEF1, EZH2, TP53, HDAC1, ESR1, EGR1, YY1, MYC, RELA, NFKB1, and E2F1 in LUAD; and HDAC1, DNMT1, and E2F1 in LUSC. We further explored the FHIT-associated kinase (PRKCQ, AURKB and ATM in LUAD as well as PLK3 in LUSC) and FHIT-associated miRNA targets (MIR-188, MIR-323, and MIR-518A-2 in LUAD). Furthermore, the following genes had the strongest correlation with FHIT expression in patients with lung cancer: NICN1, HEMK1, and BDH2 in LUAD, and ZMAT1, TTC21A, and NICN1 in LUSC. FHIT expression was positively associated with immune cell infiltration (B cell) in patients with LUAD, as well as B cell, CD8 + T, CD4 + T cells, macrophages, and dendritic cells in patients with LUSC. Nevertheless, FHIT expression was negatively associated with CD8 + T cells and neutrophils in patients with LUAD. CONCLUSIONS: The expression, gene regulatory network, prognostic value and targeted prediction of FHIT in patients with LUAD and LUSC were systematically analyzed and revealed in this study, thereby laying a foundation for further research on the role of FHIT in LUAD and LUSC occurrence. This study provides new LUAD and LUSC therapeutic targets and prognostic biomarkers as a reference for fundamental and clinical research.


Assuntos
Hidrolases Anidrido Ácido , Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Proteínas de Neoplasias , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Hidroxibutirato Desidrogenase/genética , Hidroxibutirato Desidrogenase/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Prognóstico
12.
Front Biosci (Landmark Ed) ; 27(12): 336, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36624948

RESUMO

BACKGROUND: Pyrroline-5-carboxylate reductase (PYCR) includes three human genes encoding three isozymes, PYCR1, PYCR2, and PYCR3 (or PYCRL), which facilitate the final step in the conversion of glutamine to proline. These genes play important roles in regulating the cell cycle and redox homeostasis as well as promoting growth signaling pathways. Proline is abnormally upregulated in a variety of cancers, and as the last key enzyme in proline production, PYCR plays an integral role in promoting tumorigenesis and cancer progression. However, its role in patients with kidney renal papillary cell carcinoma (KIRP) has not been fully elucidated. In this study, we aimed to systematically analyze the expression, gene regulatory network, prognostic value, and target prediction of PYCR in patients with KIRP, elucidate the association between PYCR expression and KIRP, and identify potential new targets for the clinical treatment of KIRP. METHODS: We systematically analyzed the expression, prognosis, gene regulatory network, and regulatory targets of PYCR1, PYCR2, and PYCRL in KIRP using multiple online databases including cBioPortal, STRING, MethSurv, GeneMANIA, Gene Expression Profiling Interactive Analysis (GEPIA), Metascape, UALCAN, LinkedOmics, and TIMER. RESULTS: The expression levels of PYCR1, PYCR2, and PYCRL were considerably upregulated in patients with KIRP based on sample type, sex, age, and individual cancer stage. PYCR1 and PYCR2 transcript levels were markedly upregulated in females than in males, and patients aged 21-40 years had higher PYCR1 and PYCR2 transcript levels than those in other age groups. Interestingly, PYCR2 transcript levels gradually decreased with age. In addition, the expressions of PYCR1 and PYCR2 were notably correlated with the pathological stage of KIRP. Patients with KIRP with low PYCR1 and PYCR2 expression had longer survival than those with high PYCR1 and PYCR2 expression. PYCR1, PYCR2, and PYCRL were altered by 4%, 7%, and 6%, respectively, in 280 patients with KIRP. The methylation levels of cytosine-phosphate-guanine (CpG) sites in PYCR were markedly correlated with the prognosis of patients with KIRP. PYCR1, PYCR2, PYCRL, and their neighboring genes form a complex network of interactions. The molecular functions of the genes, as demonstrated by their corresponding Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, included calcium channel activity, phospholipid binding, RNA polymerase II-specificity, and kinase and GTPase-regulatory activities. PYCR1, PYCR2, and PYCRL targeted miR-21, miR-221, and miR-222, resulting in a better prognosis of KIRP. We analyzed mRNA sequencing data from 290 patients with KIRP and found that ADA, NPM3, and TKT were positively associated with PYCR1 expression; PFDN2, JTB, and HAX1 were positively correlated with PYCR2 expression; SHARPIN, YDJC, and NUBP2 were positively correlated with PYCRL expression; PYCR1 was positively correlated with B cell and CD8+ T-cell infiltration levels; macrophage infiltration was negatively correlated with PYCR2 expression; and PYCRL expression was negatively correlated with B-cell, CD8+ T cell, and dendritic cell infiltration levels. CONCLUSIONS: PYCR1, PYCR2, and PYCRL may be potential therapeutic and prognostic biomarkers for patients with KIRP. The regulation of microRNAs (miRNAs), including miR-21, miR-221, and miR-222, may prove an important strategy for KIRP treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Masculino , Feminino , Humanos , Redes Reguladoras de Genes , Carcinoma de Células Renais/genética , MicroRNAs/genética , Neoplasias Renais/genética , Rim/metabolismo , Prolina/química , Prolina/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Pirrolina Carboxilato Redutases/genética , Pirrolina Carboxilato Redutases/metabolismo
13.
Bioinform Adv ; 2(1): vbac005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699384

RESUMO

Motivation: Changes in telomere length have been observed in cancer and can be indicative of mechanisms involved in carcinogenesis. Most methods used to estimate telomere length require laboratory analysis of DNA samples. Here, we present qmotif, a fast and easy tool that determines telomeric repeat sequences content as an estimate of telomere length directly from whole-genome sequencing. Results: qmotif shows similar results to quantitative PCR, the standard method for high-throughput clinical telomere length quantification. qmotif output correlates strongly with the output of other tools for determining telomere sequence content, TelSeq and TelomereHunter, but can run in a fraction of the time-usually under a minute. Availability and implementation: qmotif is implemented in Java and source code is available at https://github.com/AdamaJava/adamajava, with instructions on how to build and use the application available from https://adamajava.readthedocs.io/en/latest/. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

14.
Int J Biol Markers ; 37(1): 90-101, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34870494

RESUMO

BACKGROUND: VEGFA is one of the most important regulators of angiogenesis and plays a crucial role in cancer angiogenesis and progression. Recent studies have highlighted a relationship between VEGFA expression and renal cell carcinoma occurrence. However, the expression level, gene regulation network, prognostic value, and target prediction of VEGFA in renal cell carcinoma remain unclear. Therefore, system analysis of the expression, gene regulation network, prognostic value, and target prediction of VEGFA in patients with renal cell carcinoma is of great theoretical significance as there is a clinical demand for the discovery of new renal cell carcinoma treatment targets and strategies to further improve renal cell carcinoma treatment efficacy. METHODS: This study used multiple free online databases, including cBioPortal, TRRUST, GeneMANIA, GEPIA, Metascape, UALCAN, LinkedOmics, Metascape, and TIMER for the abovementioned analysis. RESULTS: VEGFA was upregulated in patients with kidney renal clear cell carcinoma (KIRC) and kidney chromophobe (KICH), and downregulated in patients with kidney renal papillary cell carcinoma (KIRP). Moreover, genetic alterations of VEGFA were found in patients with renal cell carcinoma as follows: 4% (KIRC), 8% (KICH), and 4% (KIRP). The promoter methylation of VEGFA was lower and higher in patients with clinical stages of KIRC and stage 1 KIRP, respectively. VEGFA expression significantly correlated with KIRC and KIRP pathological stages. Furthermore, patients with KICH and KIRP having low VEGFA expression levels had a longer survival than those having high VEGFA expression levels. VEGFA and its neighboring genes functioned in the regulation of protein methylation and glycosylation, as well as muscle fiber growth and differentiation in patients with renal cell carcinoma. Gene Ontology enrichment analysis revealed that the functions of VEGFA and its neighboring genes in patients with renal cell carcinoma are mainly related to cell adhesion molecule binding, catalytic activity, acting on RNA, ATPase activity, actin filament binding, protease binding, transcription coactivator activity, cysteine-type peptidase activity, and calmodulin binding. Transcription factor targets of VEGFA and its neighboring genes in patients with renal cell carcinoma were found: HIF1A, TFAP2A, and ESR1 in KIRC; STAT3, NFKB1, and HIPK2 in KICH; and FOXO3, TFAP2A, and ETS1 in KIRP. We further explored the VEGFA-associated kinase (ATM in KICH as well as CDK1 and AURKB in KIRP) and VEGFA-associated microRNA (miRNA) targets (MIR-21 in KICH as well as MIR-213, MIR-383, and MIR-492 in KIRP). Furthermore, the following genes had the strongest correlation with VEGFA expression in patients with renal cell carcinoma: NOTCH4, GPR4, and TRIB2 in KIRC; CKMT2, RRAGD, and PPARGC1A in KICH; and FLT1, C6orf223, and ESM1 in KIRP. VEGFA expression in patients with renal cell carcinoma was positively associated with immune cell infiltration, including CD8+T cells, CD4+T cells, macrophages, neutrophils, and dendritic cells. CONCLUSIONS: This study revealed VEGFA expression and potential gene regulatory network in patients with renal cell carcinoma, thereby laying a foundation for further research on the role of VEGFA in renal cell carcinoma occurrence. Moreover, the study provides new renal cell carcinoma therapeutic targets and prognostic biomarkers as a reference for fundamental and clinical research.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Carcinoma de Células Renais/patologia , Proteínas de Transporte/genética , Creatina Quinase Mitocondrial/genética , Creatina Quinase Mitocondrial/metabolismo , Redes Reguladoras de Genes , Humanos , Neoplasias Renais/patologia , MicroRNAs , Prognóstico , Proteínas Serina-Treonina Quinases , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Nat Commun ; 11(1): 5259, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067454

RESUMO

To increase understanding of the genomic landscape of acral melanoma, a rare form of melanoma occurring on palms, soles or nail beds, whole genome sequencing of 87 tumors with matching transcriptome sequencing for 63 tumors was performed. Here we report that mutational signature analysis reveals a subset of tumors, mostly subungual, with an ultraviolet radiation signature. Significantly mutated genes are BRAF, NRAS, NF1, NOTCH2, PTEN and TYRP1. Mutations and amplification of KIT are also common. Structural rearrangement and copy number signatures show that whole genome duplication, aneuploidy and complex rearrangements are common. Complex rearrangements occur recurrently and are associated with amplification of TERT, CDK4, MDM2, CCND1, PAK1 and GAB2, indicating potential therapeutic options.


Assuntos
Melanoma/genética , Neoplasias Cutâneas/genética , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Amplificação de Genes , Dosagem de Genes , Genômica , Humanos , Masculino , Melanoma/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Neoplasias Cutâneas/metabolismo , Sequenciamento Completo do Genoma
18.
BMC Pediatr ; 20(1): 456, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008347

RESUMO

BACKGROUND: X-linked lymphoproliferative disease (XLP) is a rare inherited X-linked primary immunodeficiency diseases (PID). One such disease, X-linked inhibitor of apoptosis protein (XIAP) deficiency, is characterized by Epstein-Barr virus-related hemophagocytic lymphohistiocytosis (EBV-HLH). However, EBV-HLH with coronary artery dilation and acute renal injury (AKI) in children is unusual. CASE PRESENTATION: We report the case of a young boy aged 17 months with a novel XIAP variant. He was initially diagnosed with EBV-HLH based on the HLH-2004 diagnostic criteria and the condition was accompanied by coronary artery dilation and acute renal injury. The comprehensive genetic analysis of peripheral blood-derived DNA revealed a hemizygous variant of the XIAP gene [c.116G > C(p.G39A)], which was inherited from his mother (heterozygous condition). After combined treatment with rituximab, intravenous immunoglobulin, corticosteroids, antiviral drugs, and mycophenolate mofetil (MMF) in addition to supportive therapy, his clinical manifestations and laboratory indexes were improved. The patient achieved complete remission with MMF treatment in the 8-month follow-up. CONCLUSIONS: We report the [c.116G > C(p.G39A)] variant in the XIAP gene for the first time in a case of XLP-2 associated with EBV-HLH. For male patients with severe EBV-HLH, the possibility of XLP should be considered and molecular genetic testing should be used early in auxiliary diagnosis. Reports of EBV-HLH with coronary artery dilation and AKI in children are rare. In the patients with EBV-HLH, color Doppler echocardiography and urine tests should be monitored regularly. If necessary, renal biopsy can be performed to clarify the pathology. Treatment with rituximab, immunosuppressors and supportive therapy achieved a good effect, but long-term follow-up is required.


Assuntos
Injúria Renal Aguda , Infecções por Vírus Epstein-Barr , Linfo-Histiocitose Hemofagocítica , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Criança , Vasos Coronários , Dilatação , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/diagnóstico , Herpesvirus Humano 4/genética , Humanos , Lactente , Linfo-Histiocitose Hemofagocítica/complicações , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/genética , Masculino , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
19.
BMC Med Genet ; 21(1): 183, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32957924

RESUMO

BACKGROUND: Disorders of the metabolism and absorption of vitamin B12 can lead to decrease in activity of methionine synthetase and methylmalonate coenzyme A mutase (MMUT), which results in increased levels of methylmalonic acid and homocysteine in blood and urine. Often, combined methylmalonic acidemia (MMA) and homocysteinemia is misdiagnosed due to a lack of specific symptoms. The clinical manifestations are diverse, but proteinuria as the initial presentation is rare. CASE PRESENTATION: Two cases of MMA with homocysteinemia in children are reported. Proteinuria were a primary presenting symptom, followed by anemia and neurologic symptoms (frequent convulsions and unstable walking, respectively). Screening of amino acids and acyl carnitine in serum showed that the propionyl carnitine:acetylcarnitine ratio increased. Profiling of urinary organic acids by gas chromatography-mass spectrometry revealed high levels of methylmalonic acid. Homocysteine content in blood was increased. Comprehensive genetic analyses of peripheral blood-derived DNA demonstrated heterozygous variants of methylmalonic aciduria type C and homocystinuria (MMACHC) and amnionless (AMN) genes in our two patients, respectively. After active treatment, the clinical manifestations in Case 1 were relieved and urinary protein ceased to be observed; Case 2 had persistent proteinuria and was lost to follow-up. CONCLUSIONS: Analyses of the organic acids in blood and urine suggested MMA combined with homocysteinemia. In such diseases, reports of renal damage are uncommon and proteinuria as the initial presentation is rare. Molecular analysis indicated two different genetic causes. Although the pathologic mechanisms were related to vitamin B12, the severity and prognosis of renal lesions were different. Therefore, gene detection provides new insights into inherited metabolic diseases.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/complicações , Hiper-Homocisteinemia/complicações , Proteinúria/diagnóstico , Adolescente , Erros Inatos do Metabolismo dos Aminoácidos/genética , Aminoácidos/sangue , Sequência de Bases , Carnitina/análogos & derivados , Carnitina/sangue , Pré-Escolar , DNA/sangue , DNA/genética , Cromatografia Gasosa-Espectrometria de Massas , Homocisteína/sangue , Humanos , Hiper-Homocisteinemia/genética , Masculino , Ácido Metilmalônico/urina , Proteinúria/etiologia
20.
NPJ Breast Cancer ; 6: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32818150

RESUMO

The homologous recombination deficiency (HRD) score was developed using whole-genome copy number data derived from arrays as a way to infer deficiency in the homologous recombination DNA damage repair pathway (in particular BRCA1 or BRCA2 deficiency) in breast cancer samples. The score has utility in understanding tumour biology and may be indicative of response to certain therapeutic strategies. Studies have used whole-exome sequencing to derive the HRD score, however, with increasing use of whole-genome sequencing (WGS) to characterise tumour genomes, there has yet to be a comprehensive comparison between HRD scores derived by array versus WGS. Here we demonstrate that there is both a high correlation and a good agreement between array- and WGS-derived HRD scores and between the scores derived from WGS and downsampled WGS to represent shallow WGS. For samples with an HRD score close to threshold for stratifying HR proficiency or deficiency there was however some disagreement in the HR status between array and WGS data, highlighting the importance of not relying on a single method of ascertaining the homologous recombination status of a tumour.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...